scanner icon

Rawl doorsteekanker R-XPT ETA optie-7 RVS-A4

Doorsteekankers | Merk: RAWL
Art. nr: R03-4845
Variant
info icon Waarom kan ik geen prijzen zien?

Omschrijving

RAWL doorsteekanker RAWLEX ® R-SPT. RVS-A4 kwaliteit 316. Klip met 2 segmenten. Volledig voorgemonteerd.

Specificaties

Artikelinformatie

Draad (metrisch):M8
Lengte:85 mm
Aandrijvingstype:Zeskant
Aandrijvingsmaat:13
Materiaal:RVS A4
Gewicht per 100 stuks:3,5 kg
PLU-nummer:9117
EAN/GTIN:5906675047256

Technische informatie

Keurmerk:ETA optie 7
Intrastat:73160000

Toepassingskenmerken

Boorgat diameter:8 mm
Min. boorgat diepte:55 mm
Klemdikte min:20 mm
Klemdikte max:35 mm

Logistieke informatie

Inhoud verpakking aantal:100 stuks
Soort verpakking:Doos
Verpakking materiaal:Karton
Verpakking breedte:18,8 cm
Verpakking diepte:14,6 cm
Verpakking hoogte:7,6 cm
Verpakking volume:2086 cc
Verpakking bruto gewicht:3500 g

Keurmerken en toepassingen

quality mark icon

Technische informatie

De benaming ‘roestvrij staal’ is algemeen ingeburgerd, maar wordt door metallurgen liever niet gebruikt. Zij spreken van roestvast staal, want RVS kan namelijk wel roesten. Het corrosiegedrag van alle metalen is afhankelijk van de legerings-elementen. RVS bevat het legeringselement chroom (passieve laag) en roest hierdoor veel trager. Het roesten van RVS gebeurt veelal in putjes en vlekjes die na verloop van tijd het metaal kunnen doorboren. Meestal gebeurt dit zonder dat hierbij roestlaagjes loskomen (zoals bij staal). Dit zorgt echter voor een geleidelijke verzwakking van de constructie en doet het mooie uiterlijk teniet. De bruine roestvlekjes kan men meestal relatief gemakkelijk wegvegen of schuren (vliegroest), maar dit neemt niet weg dat de corrosie zich in de diepte gewoon doorzet en dat de roestvlekjes opnieuw zullen verschijnen.

Je ziet bij bevestigingsmiddelen vaak het type RVS omschreven met daarachter een getal, bijvoorbeeld: ‘’RVS A2 70’’ 


De staalgroepen en sterkteklassen worden in een viervoudige letter- en cijfercode aangeduid. De letter geeft de staalsoort aan:

A = Austenitisch staal
C = Martensitisch staal
F = Ferritisch staal  


Het eerste cijfer na de letter geeft het legeringstype binnen de groepen A-C en F aan. De laatste 2 cijfers geven de sterkteklasse aan; bijvoorbeeld: A2 – 70 betekent: Austenitische staalsoort (koudverstevigd) en met een treksterkte van minstens 700 N/mm2.  

Voor weinig corrosieve milieus, zoals een normale buiten atmosfeer, kan prima RVS A2 gebruikt worden. Er moet wel rekening gehouden worden met de afwerking van het RVS product. De oppervlakte beïnvloedt namelijk sterk de corrosiebescherming en het onderhoud. Hoe fijner/gladder (geschuurd) het oppervlakte is, hoe resistenter tegen corrosie.

In het geval van een schroef of bout zal er dan ook altijd als eerste corrosie ontstaan tussen de schroefdraad of bijvoorbeeld bij de bit-indruk waar sterke en scherpe vervormingen zijn aangebracht tijdens de productie van het bevestigingsartikel.  

In meer agressieve milieus moet voor het gebruik van bevestigingsmaterialen RVS A4 worden aangeraden.  

Deze milieus kunnen zijn:
- in een zone van 20km vanaf de kustlijn.
- in milieus met sterke verontreiniging door industriële activiteiten (ijzer of zwavel).
- in de buurt van spoorwegen of drukke verkeersknooppunten.

De magnetische eigenschap van RVS wordt bepaald door de kristalstructuur, dus door de samenstelling van het soort RVS. Roestvaste staalsoorten met tussen de 6 en 26% nikkel (de 300-reeks uit de AISI) zijn austenitisch en daarom niet-magnetisch in geleverde toestand. Nikkel zorgt ervoor dat het staal in zijn austenitische toestand blijft tijdens het afkoelen. De overige elementen verhogen de corrosieweerstand en verwerkbaarheid van het staal.

 

Bij sterke koudvervorming verandert de kristalstructuur echter, waardoor wel licht magnetische eigenschappen kunnen optreden bij austenitische RVS soorten. Martensitische, ferritische en duplex roestvaste staalsoorten zijn daarentegen altijd magnetisch. 

 

Schroeven worden vanwege de mogelijkheid om na te kunnen harden nog wel eens van RVS-410 gemaakt. Deze RVS soort bevat geen nikkel en er kan door de koudvervorming wel degelijk magnetisch worden. De mate hiervan kan echter verschillen per schroef of batch en is dus niet erg stabiel magnetisch.

    • - AISI (American Iron and Steel Institute) 

      - ASTM A240 (American Society for Testing and Materials) 

      - Europese norm EN 10088

      - EN 10088-1 (samenstelling, fysische eigenschappen) 

      - EN 10088-2 (vlakke producten, mechanische eigenschappen) 

      - EN 10088-3 (lange producten, mechanische eigenschappen) 

      - ISO 3506 standaard voor bevestigingsmiddelen uit roestvast staal

  1. Warmte-inbreng zoals bij het lassen waar verkleuring en chroomverarming ontstaat.
  2. Besmetting met vreemd ijzer door bijvoorbeeld gereedschappen of de omgeving.
  3. De aanwezigheid van chloriden en zouten in het milieu of het medium.
  4. Vervorming van het materiaal zoals bij buigen en zetten waarbij structuurverandering in het materiaal ontstaat.

Wat is beter roestwerend?
Dit is best lastig 1-op-1 met elkaar te vergelijken. Om de corrosiebestendigheid van een stalen product met corrosiewerende oppervlaktebehandeling te meten kun je een zogenaamde zoutsproeitest uitvoeren. Een zoutsproeitest is alleen bedoeld voor het meten van de corrosiebestendigheid van stalen producten met een oppervlaktebehandeling. Een veelgebruikte beoordelingsmethode is het meten van het materiaalverlies van de oppervlaktebehandeling na een bepaalde periode van zoutsproeinevel. Deze beoordelingsmethodiek is dus niet mogelijk bij RVS producten omdat dit door-en-door van hetzelfde materiaal gemaakt is. Bij RVS wordt de corrosiebestendigheid bepaald door de kwaliteit van de legering zelf. De corrosiebestendigheid is dus lastig te vergelijken tussen een RVS schroef en onze stalen schroeven met AR-coating.  

Een veel toegepaste beoordelingsmethodiek voor het bepalen van de corrosiebestendigheid in een zoetsproeitest is het visueel beoordelen van de zichtbaar rode roestvorming op het product na een bepaalde tijd. Het corrosieproces van zink start met zogenaamde witte roest, daarna volgt het corrosieproces van het metaal en dat uit zich in rode roest. Door een visuele controle wordt de hoeveelheid rode roest in procenten nauwkeurig uitgedrukt over het totale oppervlakte van de schroef.  
Het resultaat van de zoutsproeitest wordt uitgedrukt in een aantal uren dat de schroef dit agressieve klimaat van zout heeft doorstaan tot aan het moment van zichtbaar rode roest. Om de corrosiebestendigheid van de AR-coating aan te geven kun je een vergelijk maken tussen verschillende oppervlaktebehandelingen.

  1. Een verzinkte schroef met een oppervlaktebehandeling van >5 Mu elektronische aangebrachte zink geeft na zo’n 24 uur zichtbaar rode roestvorming in de zoutsproeitest volgens ISO 9227.
  2. Een thermisch verzinkte bout met >30 Mu zink houdt het ongeveer 500 uur uit zonder rode roestvorming.  
  3. RVS 410, een speciale RVS-soort zonder toevoeging van nikkel, begint na 700 uur rood te roesten. 
  4. Een RVS A2 schroef (AISI 304) geeft rond de 1000 uur zoutsproeitest de eerste rode roestvlekken.  
  5. Een schroef van RVS A4 (AISI 316) krijgt rond de 1500 uur de eerste roestvlekken.  
  6. Onze gecoate Dynaplus schroeven doorstaan allemaal minimaal 1500 uur zonder zichtbaar rode roest in de reguliere zoutspoeitest.

Ondanks de opmars van de chemische verankeringen blijven mechanische ankers een belangrijk bevestigingsmiddel in beton. Ook daar behoren nieuwe ontwikkelingen tot de orde van de dag, met steeds grotere laststerktes, toepassingen en zelfs gebruiksvriendelijkheid. Er zijn tegenwoordig zelfs schroefankers verkrijgbaar die na voorboren ingedraaid én uitgedraaid kunnen worden.  

In verankeringen is het van groot belang dat je producten gebruikt die voorzien zijn van het Europese ETA keurmerk.  

Europese Richtlijnen
Men kan onderscheid maken tussen drie soorten ankers: lichte ankers, middenlast- en zwaarlastankers. Afhankelijk van de sterkte van het anker en de verbinding die deze maakt krijgt het anker een zogenaamde optie. Van optie 1 tot en met 6 en van optie 7 tot en met 12. Opties 1 tot en met 6 omvatten de sterkste ankers. De meest voorkomende opties zijn optie 1 en 7. De overige opties omvatten eerder gedetailleerde voorwaarden zoals randafstand, tussenafstanden en dergelijke meer. Opties 1 en 7 gaan over toepassing in gescheurd of ongescheurd beton. Gescheurd beton omvat de trekzone in het beton. Daar is de belasting op het beton veel groter dan bij ongescheurd beton (de 'duwzone'), en moet je dus een andere anker gebruiken. Een anker dat voor ongescheurd beton bedoeld is, zal de spanning die bij gescheurd beton voorkomt niet aankunnen en zal het bijgevolg dan ook begeven.  

Het is belangrijk om het onderscheid tussen de verschillende opties in acht te houden. Zo kunnen opties 7 tot en met 12 niet gebruikt worden in een trekzone, hoe groot de diameter van het anker ook is. Dit vanwege het grotere risico. Aan de Europese richtlijn hangen ook enkele voorwaarden vast aan de ankers. Zo moet de fabrikant met een ETA-keuring garanderen dat zijn product minimaal 50 jaar kan meegaan. Daarnaast staat in het rapport hoe je het anker moet monteren en in welke omstandigheden (nat of droog). De verankering moet ook gebeuren door gekwalificeerd personeel en volgens de richtlijnen van het ETAG. Wie zich daar niet aan houdt, plaatst de verankering natuurlijk op eigen verantwoordelijkheid en zal dan ook de gevolgen dragen in geval van een incident.  


Enkele belangrijke vragen voor het werken met zwaarlastankers? 

1. Werk ik in een trekzone of in de duwzone van het beton?  

Duwzone=optie 7 en trekzone=optie 1 

2. Hoe dicht bij de rand moet je de ankers gaan plaatsen? Dicht bij de rand?  

Gebruik een schroefanker of chemisch anker i.p.v. een spreidanker om scheuren van het beton te voorkomen 

3. Welke last moet het anker gaan dragen?  

Iedere type en maat verankering heeft een bepaalde treksterkte. Dit bepaald hoeveel lastkracht het anker aan kan. De trekbelasting wordt uitgedrukt in kilonewton (kN), waarbij 1 kN gelijk staat aan een belasting van 100 kg.  

4. Hoe diep kun je je anker gaan plaatsen?  

Hoe dieper je de verankering kunt plaatsen hoe hoger de treksterkte en hoe groter de belasting.  

5. En welke diameter kun je monteren?  

Hoe groter de diameter hoe groter de belasting. De diameter bepaald ook voor een deel de afschuifbelasting. Dit is de dwarse belasting op het anker. De diameter van de verankering bepaald ook de boordiameter van het anker. Om een sterke verbinding te garanderen is het boorgat net iets kleiner dan de draaddiameter van het anker zelf. 

6. Moet het anker demonteerbaar of herbruikbaar zijn?  

Spreidingsankers zijn lastig demonteerbaar en niet herbruikbaar. Chemische ankers zijn niet demonteerbaar of herbruikbaar. Wil je gemakkelijk demonteren en ook nog hergebruiken? Gebruik dan betonschroefankers of betonankerbouten.  

7. Hoe dik is het te monteren deel? 

Dit is belangrijk om vooraf te weten voor de keuze van het anker. Het klembereik geeft aan wat de maximale, te bevestigen dikte is. 

8. Waar moet de bevestiging worden gemaakt? Binnen of buiten? En in een extreem agressief klimaat?  

Gebruik voor normale binnen omstandigheden elektrolytisch verzinkte ankers maar voor buitentoepassingen minimaal RVS A2. Voor extreme condities kun je RVS A4 toepassen. 


Veiligheidsfactor
De richtlijnen van de ETA omvatten ook een veiligheidsfactor. Op de aangegeven belasting moet een marge zitten om in alle veiligheid te kunnen werken. Een van de redenen voor die marge is de mogelijkheid tot piekbelasting. Die moet ruim ingeschat worden. Verder moet je alle externe factoren indachtig zijn. Men kan niet 100% garanderen dat het gebruikte beton van optimale kwaliteit is. Men kan evenmin zeker zijn dat de monteur van de verankering voldoende gekwalificeerd is. Daarnaast moet je ook nog rekening houden met metaalmoeheid. Als alles dan al correct geïnstalleerd wordt, weet je niet helemaal of het metaal lang genoeg zal meegaan. Daarom wordt een dergelijke marge ingebouwd. Men kan namelijk nooit zeker genoeg zijn.  

Over het algemeen kan men stellen dat de meeste ankers voorzien zijn van een veiligheidsfactor van 1,4. Dat wil zeggen dat, bij een aangegeven treksterkte van 100 kg, de eigenlijke treksterkte 140 kg is. Voor de Europese regelgeving gaat men zelfs al naar een factor van 3.  

Het beton
Voor een veilige en goede bevestiging hangt er veel af van ondergrond zelf. Hoewel hier vooral de verankering in beton besproken wordt, zijn er onderling nog heel wat verschillen. De meest gangbare betonvariant is de C20/25, de vroegere B25. De cijfers slaan respectievelijk op de cilinderdruksterkte en kubusdruksterkte, in MPa. Hoe hoger de waarden, hoe sterker en harder het beton.

Naast beton kan men ook nog verankeren in kalksteen, baksteen (hol en massief) en in gipskarton. Voor elke ondergrond zal men ook een andere anker gebruiken, naargelang van de specifieke eisen van de verankering. Wat je zeker niet mag vergeten is de reiniging van het boorgat. Het is belangrijk om na het boren van het gat het boorgat goed te reinigen om een goede verbinding te garanderen. Er zijn hiervoor speciale borsteltjes of luchtspuiten verkrijgbaar. 

Soorten zwaarlastankers
Men kan op verschillende manieren de ankers in categorieën verdelen: (her)gebruik, installatie, grootte of diameter zijn hiervoor allemaal mogelijke parameters.  

Onderscheid bij installatie
Grofweg kan men stellen dat er op het vlak van installatie twee soorten ankers zijn:  

Doorsteekankers
Voorsteekankers -> Hulsankers  

Doorsteekankers ondergaan een voorafgaande montage, waarna het anker door het te verankeren onderdeel heen vastgezet wordt. Voorsteekankers worden rechtstreeks met het te verankeren onderdeel gemonteerd op de ondergrond.  

Onderscheid bij bevestiging
Verder is er een wezenlijk verschil tussen slag- en spreidingsankers, en schroef- of snijdende ankers. Er bestaan tal van soorten slagankers, gaande van snelbouwankers en keilbouten tot hulsankers. Eenmaal gemonteerd zitten slagankers letterlijk muurvast en zijn ze niet meer uit de ondergrond te halen. Vaak zijn zij ook voorzien van een onderleg schijf (DIN9021) die een gelijkmatige belasting uitoefent. Anderzijds gebeurt de verankering enkel op de ring en de kegel, in tegenstelling tot betonankerbout, waar de verankering op de gehele schroef gebeurt.  

Betonankerbouten zijn wel eenvoudig te demonteren en opnieuw te gebruiken, wat handig kan zijn bij een tijdelijke montage van bijvoorbeeld stalen steunpijlers bij het afschoren. Daarnaast zijn ze ook beter bestand tegen trillingen en hebben dus een hogere afschuifbelasting.  

Pluggen
Naast alle zware en middenzware ankers heb je ook lichte ankers. Deze lichte ankers, zoals pluggen of lichte schroefankers, zullen eerder gebruikt worden door installateurs voor het bevestigen van beugels. Pluggen hebben een geringe belastbaarheid maar kunnen zich in vrijwel elke ondergrond handhaven.  

Keuze en berekenen
Er spelen verschillende factoren mee bij de keuze van de verankering, waarbij men afweegt welk anker bij welke situatie het beste geschikt is, vaak afhankelijk van de belasting op het anker.  

Het specifieke anker voor een specifieke situatie is iets wat niet bestaat. Eerst en vooral is het logisch om te weten dat men om hout te verankeren, geen zwaarlastanker nodig heeft. Dat terzijde: als men staal wil installeren, zal men eerder rekening houden met de klemdikte. Men gaat berekenen hoeveel kracht die klemdikte kan verdragen. Op basis van het resultaat van de berekening kan er uitgezocht worden welk anker men moet gebruiken.  

Uiteindelijk draait het allemaal rond rekenen en berekenen en eventueel opnieuw berekenen. Alles bij elkaar komt het dus daarop neer. Bij mechanische ankers valt het qua rekenwerk eigenlijk allemaal best mee; in het ETA-rapport staan normaal gezien wel de toegelaten minimum- of maximumwaarden wat betreft klemdikte, diameter, lastkracht of boordiepte.

Dit keurmerk wordt niet alleen gebruikt voor doorsteekankers, maar voor alle zwaarlast verankeringen. Dus ook voor de keilbout, doorsteekanker, chemische anker, schroefanker etc. Omdat de keilbout voor 95% in de DHZ wordt verkocht, is het keurmerk minder van belang dan voor de andere verankeringen. 

Er zijn een paar belangrijke aspecten aan dit keurmerk. ETA kan verdeeld worden in twee groepen: 

1. Ongescheurd beton/drukzone/uncracked concrete
2. Gescheurd beton/trekzone/cracked concrete 

 

Door middel van de bovenstaande illustratie is het makkelijk uit te leggen. De betonnen plaat waar de vrachtwagen overheen rijdt vertoont minuscule scheurtjes aan de onderkant van het beton. Met andere woorden de trekzone. Als we dit nu vertalen naar de praktijk, dan geldt het volgende: als je een anker plaatst in de vloer of in een muur, dan heet dat drukzone/ongescheurd beton. Plaats je een anker in het plafond (dus boven je hoofd), dan heet dat trekzone/gescheurd beton. 

Gescheurd beton heeft ETA optie 1 en ongescheurd beton heeft optie 7. Er bestaan meerdere opties in de ETAG (Guidelines). De eerste groep loopt van 1 tot en met 6 en de tweede groep loopt van 7 tot en met 12. Waarbij 1 en 7 de hoogste graad is in de betreffende groep. Voor ons is het belangrijkste onderscheid: druk- of trekzone!

In plaats van steen wordt er meer en meer gebruik gemaakt van beton. Dit begon al in de jaren 80. Rond die tijd is ook de doorsteekanker ontwikkeld. Wat zijn de verschillen tussen een keilbout en een doorsteekanker? 

Het woord zegt het al, het boorgat is gelijk aan het gat in het te bevestigen materiaal. In theorie kun je dus het te bevestigen materiaal tegen de muur aanhouden en in één keer een gat boren. Vandaar de naam doorsteek anker! Het vastdraaien van een doorsteekanker vindt op dezelfde manier plaats, echter de spreiding is vele malen kleiner. Dat is ook de reden dat een doorsteekanker alleen gebruikt kan worden in beton. Technisch gezien is de doorsteekanker vele malen beter dan de keilbout. Dat heeft er ook toe geleid dat in de professionele wereld de keilbout nagenoeg verdwenen is.  


De range van de RAWL doorsteekankers is vrij groot 

1. R-XPT verzinkt;
2. R-XPT-HD thermisch verzinkt (HD staat voor Hot dipped galvanised);
3. R-XPTII-A4 in RVS type A4 (316);
4. R-HPTII-ZF is hetzelfde als de XPT, maar dan ETA gekeurd optie 1 voor zowel gescheurd als niet gescheurd beton.



Afbeelding van een doorsteekanker. Door het vastzetten van het anker wordt de klip naar achteren getrokken. De twee lijnmarkeringen zijn voor de minimale en maximale plaatsingsdiepte. 

Het doorsteekanker wat wij voeren van Rawl is de XPT serie verzinkt met ETA optie 7. De reden hiervan is dat wij dit product complementair leveren, wij zijn hier geen specialist in. Let wel; wij kunnen natuurlijk alle producten leveren, maar dat is alleen interessant bij grote aanvragen.